CSc 360 Operating Systems Page Allocation

> Jianping Pan Summer 2015

> > 1

7/8/15

CSc 360

Review

- Page replacement
 - $-\mathsf{FIFO}$
 - optimal
 - LRU
 - LRU approximation

Page buffering

- Keep a pool of free pages

 speed up swapping in desired pages
 no need to wait a page *becomes* free
- Keep a list of modified pages
 - synch with disk when paging is idle
 - reduce overhead when swapping out
- Reuse "clean" pages from the pool - on page fault, check free pool first 7/8/15 CSc 360 3

Page allocation

- A process needs *minimum* number of pages
 - e.g., IBM 370: 6 pages to handle SS MOVE
 - instruction is 6 bytes, might span 2 pages
 - 2 pages to handle **from**
 - 2 pages to handle **to**
- Two major allocation schemes
 - fixed allocation
 - priority allocation

Fixed allocation

- Equal allocation
 - *M* free pages
 - N requesting processes
 - allocation: floor(M/N) each
 - some processes may request less than M/N
- Proportional allocation
 - each process requests s_i ; all request S=sum s_i

5

- allocation: s_i/S^*M
- 7/8/15 CSc 360

Priority allocation

- Allocation proportional to priority
 - higher priority process gets more pages allocated *when* necessary
- On page fault
 - select for replacement one of its frames.
 - select for replacement a frame from a process with lower priority number
- Global vs local replacement

7/8/15 CSc 360 6

Prevent thrashing

- Thrashing
 - more time on paging than executing
 - busy I/O, idle CPU
 - more processes admitted, more page faults
 - more processes in thrashing!
- Why thrashing
 - paging: explore locality
 - thrashing: locality explored too much!

Paging and thrashing

- Why does thrashing occur?
 - sum of size of locality > total memory size

Working-set model

- local replacement
 - sufficient provisioning
 - working-set model
 - working-set window
 - most recent page references
 - working-set size (WSS)
 - number of unique page references

- when sum WSS_i>M, reduce multiprogramming!

9

7/8/15CSc 360

This lecture

- Page allocation
 - allocation algorithms
 - thrashing and thrashing prevention
- Explore further
 - OSC7 Section 9.8 and 9.9

Next lecture

Mass storage
 – read OSC7Ch12

11