Advanced Computer Networks

VoIP

Jianping Pan Spring 2015

6/17/15

Course project website

- Count for 5% in your final grade
- Updated throughout the project, by you
 - H list URL on connex->forums->course projects
 - let me know if you want to use connex wiki
 - H please populate with your project proposal
 - what's the problem and why is it important?
 - what have been done on it and why they are not enough? (including your previous and other ongoing projects)
 - what's your approach and expected deliverables?
 - a roughly biweekly schedule toward the end of July
 - progress/milestone: keep updated at least biweekly

6/17/15 – they are useful materials for your course project

* first checkpoint: June 22, 2015

Today's topics

- Network support for voice over IP (VoIP)
 - ^Ĥ application
 - ^Ĥ session
 - H transport
 - ^Ĥ network
 - ^H and challenges
- A peer-to-peer implementation ^Ĥ Skype

VolP

Voice over IP

H voice is still a major means of communication
 H trend: analog, digital, packetized

Application requirements

^H reasonable bandwidth with a non-zero minimum

- dependent on encoding schemes (10~100 Kbps)
 H tolerate some packet losses
 - normally less than 1%

H sensitive to packet delay and jitter

csc466/579

- one-way mouth-to-ear delay: less than 150 ms
- average one-way delay jitter: less than 30 ms

6/17/15

Deal with network impairments

- Packet loss (or equivalently excessive delay)
 H application impacts
 - voice clipping and skipping, decoding dependence, etc H application strategies
 - loss concealment: add background noise, repeat the last packet, interpolate with the next packet, etc
 - effective up to around 20 ms (about one packet)
- End-to-end delay

^H encoding and decoding

H transmission, propagation, processing, queuing

Delay jitter

H playback buffering: tradeoff 6/17/15 csc466/579

Q: small buffer or big buffer?

SIP

Session initiation protocol

H signaling: similar to SS7 in PSTNH SIP is not just limited to VoIP

• SIP functions

^H setup calls

^H make changes to ongoing calls

^H terminate calls

H and more (e.g., presence)

• SIP does not offer

H media transport, QoS support, server control, etc

SIP operations

- Design guidelines H client-server model, HTTP+MIME syntax
- SIP entities

H UA, registration, proxy, redirect server

Registration

H name/location binding

location

6/17/15

csc466/579

Explore further: http://www.cs.columbia.edu/~hgs/sip/

SDP

Session description protocol

^H used in SIP to describe sessions

- H include media type, network/transport parameters
- H e.g., media: media, port, protocol, format_list
 - m=audio 2000/2 RTP/AVP 0 98
- ^Ĥ format attributes
 - a=rtpmap:0 PCMU/8000
- H connection: net_type, add_type, address/TTL/#
 - c=IN IP4 1.2.3.4/127/3
- Ref: http://www.ietf.org/rfc/rfc4566.txt

RTP/RTCP

- Real-time transport protocol
 H does NOT guarantee real-time itself
 H but does provide mechanisms to achieve so
- RTP profile
 - H Marker: e.g., the start of a talk spurt
 - H Payload Type: e.g., specific audio codec
 - PT=0: uPCM 64Kbps
 - PT=3: GSM 13Kbps

^H timestamp: e.g., sampling rate, 8KHz PCM ^H packet size: e.g., about 20ms samples in PCM

packets independent as much as possible: ALF

H other issues: e.g., mixed audio channels 6/17/15 csc466/579 11

Explore further: http://www.cs.columbia.edu/~hgs/rtp/

RTCP

- sender RTF RTCF RTCF receiver RTCF receiver
- H RTP's control companion
 H purpose: feedback control information
- for flow/error/congestion/quality control
 H two consecutive UDP ports for RTP and RTCP
- Sender report

H offer sending/reception statistics
 H NTP/RTP time stamp, byte/packet count, etc

Receiver report

H offer reception statistics

Real-time control protocol

H short/long-term loss ratio, time stamp, jitter, etc

6/17/15

csc466/579

12

Q: how does RTCP deal with scalability?

NAT

- Network address translation
 - H was to deal with IPv4 address shortage
 H now pervasive in all networking scenarios
- "Directional" connectivity
 - outgoing connections are OK
 - mappings are created to filter incoming p
 - incoming connections are blocked
- Problems with VoIP applications
 - how SIP server reaches UA
- how caller reaches callee (6/17/15 csc466/579

Q: problems when behind your home router?

13

NAT traversal

- NAT characterization
 Ĥ full cone
 Ĥ restricted cone
 Ĥ port-restricted cone
 Ĥ symmetric cone
- NAT traversal
 - H static configuration
 - H UPnP (universal plug and play)
 - H application-layer gateway
 - H STUN, TURN (relay)
 - H ICE (interactive connection establishment)

6/17/15

csc466/579

14

Explore further: http://www.cs.uvic.ca/~pan/seng490

STUN and TURN

- Simple traversal of UDP through NAT
 - ^H probe and learn allocated address/port at NATs H work with many but not all NATs

6/17/15

Challenges

• Internet: best-effort service

^Ĥ no guarantee on minimal throughput
 ^Ĥ excessive packet loss, excessive delay, jitter, etc
 ^Ĥ better than best-effort services?

Application: client-server model H scalability issues H peer-to-peer models?

NAT and firewall

H NAT traversal is not bullet-proof

Security

H "who else can hear you?" 6/17/15 csc466/579

IP telephony examples

- Vonage: proprietary VoIP infrastructure
 - good PSTN interworking
 - SIP compatible
 - phone adapter: SIP UA and more
- Skype: without specialized infrastructure
 - better NAT traversal capability
 - with the help of other users
 - voice encryption
 - proprietary protocols
 - an peer-to-peer implementation

A case study

• Skype

 ^H [BS06] Salman A. Baset and Henning Schulzrinne, "An Analysis of the Skype Peer-to-Peer Internet Telephony Protocol", IEEE Infocom 2006. [Skype]

This lecture

VoIP and P2P

H network support for VoIP applications

application, session, transport, network
 H challenges

from the viewpoint of applications and networks
 H Skype

- a peer-to-peer implementation
- Explore further

 ${}^{\rm H}$ Q and "Explore further" footnotes

^H we still don't know much about Skype!

^H Skype acquired by Microsoft in 2011

http://www.cs.columbia.edu/~salman/skype/

6/17/15 csc466/579

also see the Skype reality check project in Spring 2015: http://skype.engineeringbits.com

19