
6/17/15 CSc 360 1

CSc 360
Operating Systems

Deadlocks

Jianping Pan

Summer 2015

6/17/15 CSc 360 2

Review

• Ways to process synchronization
– hardware-assisted solutions
– mutex, semaphores
– monitors

• Required properties
– mutual exclusion
– making progress (i.e., no deadlock)
– bounded waiting (i.e., no live-lock)

6/17/15 CSc 360 3

Dining philosophers: semaphores
• Shared data

– Initially all values are 1
semaphore chopstick[5];

• Using semaphores, for Philosopher i:
do {

wait(chopstick[i])
wait(chopstick[(i+1) % 5])

 …
eat
 …

signal(chopstick[i]);
signal(chopstick[(i+1) % 5]);

 …
think
 …

} while (1);

6/17/15 CSc 360 4

Dining philosophers: monitors
monitor DP {

…
 void test (int i) {

 if ((state[(i + 4) % 5] != EATING) &&
 (state[i] == HUNGRY) &&
 (state[(i + 1) % 5] != EATING)) {
 state[i] = EATING ;
 self[i].signal () ; // no effect if not blocked

 }
 }

 initialization_code() {
 for (int i = 0; i < 5; i++)
 state[i] = THINKING;
}

}

• Using monitors

 dp.pickup (i)
...

 EAT
...

 dp.putdown (i)

6/17/15 CSc 360 5

Deadlocks

• Deadlock can occur if all are true
– mutual exclusion

• wait(chopstick[i]);

– hold-and-wait
• wait(chopstick[i]); wait(chopstick[(i+1)%5]);

– no-preemption
• wait();

– circular-wait
• chopstick[(i+1)%5]

Q: necessary conditions

6/17/15 CSc 360 6

Resource-allocation graph

c3

P1

P2

P3 P4

P5

c1c2

c4

c5

P1

P2

P3 P4

P5

c1c2

c4

c5
c3

request edge assignment edge

6/17/15 CSc 360 7

P1

P2

P3 P4

P5

c1c2

c4

c5
c3

P1

P2

P3 P4

P5

c1c2

c4

c5
c3

How about this?

• No directed cycle
– no deadlock

• Directed cycle
– one instance per resource type

• deadlock

– otherwise: maybe!

6/17/15 CSc 360 8

Preventing deadlocks

• Prevention
– mutual exclusion

• only when mutual exclusion is really necessary

– hold-and-wait
• all-or-none

– non-preemption
• give up on request

– circular-wait
• strictly ordered

void pickup (int i) {
state[i] = HUNGRY;
test(i);
if (state[i] != EATING)

self [i].wait;
}

void test (int i) {
if ((state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;
self[i].signal () ;

}
}

6/17/15 CSc 360 9

Avoiding deadlocks

• Avoidance
– declare maximal resource usage in advance

• claim edge

– check against currently admitted processes
– admit if safe (e.g., no circular-wait)

• a sequence of P
i
, such as P

i
 is satisfied with all P

j<i

• single instance resource: resource-allocation graph

• multi-instance resource: banker’s algorithm

6/17/15 CSc 360 10

Deadlock avoidance

• Basic fact
– in safe state: no deadlocks
– in unsafe state:

• possible deadlocks

– avoidance: not in unsafe state

• Single instance of resource
– resource-allocation graph
– claim vs request edge
– assignment edge

6/17/15 CSc 360 11

Banker's algorithm

• Available: Vector of length m. If available [j] = k, there are k
instances of resource type Rj available.

• Max: n x m matrix. If Max [i,j] = k, then process Pi may
request at most k instances of resource type Rj.

• Allocation: n x m matrix. If Allocation[i,j] = k then Pi is
currently allocated k instances of Rj.

• Need: n x m matrix. If Need[i,j] = k, then Pi may need k
more instances of Rj to complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j].

Let n = number of processes, and m = number of resources types.

6/17/15 CSc 360 12

Safety algorithm
1. Let Work and Finish be vectors of length m and n,

respectively. Initialize:

Work = Available

Finish [i] = false for i = 0, 1, …, n- 1.

2. Find and i such that both:

(a) Finish [i] = false
(b) Needi Work

If no such i exists, go to step 4.
3. Work = Work + Allocationi

Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe state.

6/17/15 CSc 360 13

Resource-request algorithm
 Request = request vector for process Pi. If Requesti [j] = k

then process Pi wants k instances of resource type Rj.

1.If Requesti <= Needi go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim.

2.If Requesti <= Available, go to step 3. Otherwise Pi must
wait, since resources are not available.

3.Pretend to allocate requested resources to Pi by modifying
the state as follows:

Available = Available – Request;
Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

If safe: the resources are allocated to Pi.
If unsafe: Pi must wait, and the old resource-allocation

state is restored example on blackboard

6/17/15 CSc 360 14

This lecture

• Deadlocks
– deadlock characteristics
– how to prevent deadlocks
– how to avoid deadlocks
– how to detect and resolve deadlocks

• after-class reading

• Explore further
– CSC 464: Concurrency

6/17/15 CSc 360 15

Next lecture

• Memory management
– read OSC7 Chapter 8 (or OSC6 Chapter 9)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

