Advanced Computer Networks

P2P Swarming

Jianping Pan Summer 2015

Paper reading summaries

- R1 due this Thursday, June 11
 - H reading list is on connex (will be further updated)
 - HR2--4 submission schedule to be posted soon
 - H 1-page reading summary on assigned papers
 - H what's the problem? important then? and now?
 - H main ideas? previous work? follow-on work?
 - H strengths then? and now? why?
 - H weaknesses then? and now? why?
 - H how to improve? how to do better or differently?

6/10/15 csc466/579 2

^{*} reading guideline at: http://www.cs.uvic.ca/~pan/csc466/reading.txt (template available too)

Review: going P2P

- Client-server
 - H server is well-known and serves all client requests H scalability issue
- Peer-to-peer
 - **H** structured or unstructured
 - H every peer is a (potential) server
 - search is a challenge
 - H one request is still served by one peer
 - until the peer fails, then try to use another peer

Napster and Gnutella

- Napster
 - H centralized directory server
 - list uploading and query handling
 - H peer-to-peer file download
- Gnutella
 - H fully distributed
 - scoped flooding search
 - H peer-to-peer file download
- Improving Gnutella
 - H node hierarchy
- H non-flooding search csc466/57

More design choices

- If more than one peer can serve, why do they not serve the same request together?
- Benefit
 - H more resilient to node dynamic
 - does not rely on any particular peer
 - H fit better with the asymmetric access link
 - higher download bandwidth than upload
- Overhead
 - H how to get served from multiple peers
 - work together constructively

The BitTorrent approach

Chop a file into small, fixed-size pieces
 H e.g., pieces (usually 256 KB each)
 H and then into blocks (usually 16 KB each)

.torrent

H meta information about the file

[⊬] out-of-band retrieval

Tracker

H return a list of peers may have some pieces

Seed and leecher/downloader

H peers have the complete/incomplete file

.torrent

- Tracker URL
- File info

[⊬] name, length

- Piece info
 - [⊬] length, hash
- Other info

H date, comment, etc

Bencoding

H strings, integers, lists, directories

He.g., 4:spam, i3e, I4:spam4:eggse, d4:spaml1:a1:bee

Tracker protocol

- HTTP GET request
 - H info_hash: to identify the file
 - H peer_id: of the requesting peer
 - H client address and port: to respond to incoming requests
 - H bytes uploaded, downloaded, left, etc
 - H numwant: the number of peers in the response list
- Tracker response
 - H failure reason, if any
 - H contact interval
 - H peer list and stat (seed and leecher, etc)
- Tracker-less mode (on Kademlia DHT)
 6/10/15 csc466/579

Tit-for-tat

- Download while upload: tit-for-tat
 - H upload to whom from which download: trading pieces
 - H prevent free-riding
 - fairness?
- Choking/unchoking
 - H a limited number of uploads
 - default: 4+1
 - H evaluate peers based on their recent download speed
 - 20-second average
 - H upload to the peers with the fastest download speed
 - adjust every 10 seconds

Optimistic unchoking

- Stuck with poor peers?
- Optimistic unchoking
 - H upload to other peers as well
 - rotate every 30 seconds
 - H hope to get better download
 - H also help bootstrap other peers
- Seed's unchoking
 - H seed does not download from other peers
 - H try to equally distribute its upload to leechers
 - H or upload to the one downloads fastest

Peer wire protocol

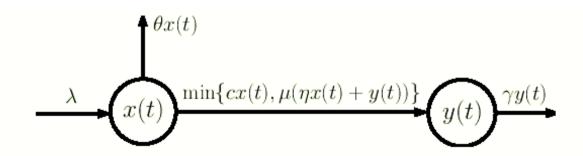
- Messages over TCP
 - **H** handshake
 - [⊬] keep-alive
 - H choke/unchoke
 - H interested/not-interested
 - · a block is downloaded if the client is interested and unchoked
 - a block is uploaded if the peer is interested and unchoked

H have

advertise new pieces

H request/piece

request blocks in a piece


Piece selection

- Initially, a few random pieces
 - H anything is better than nothing
 - H easy to find at the beginning
- Then, rarest-first in neighborhood
 - H become less dependent on seed
 - H more interested by peers
- Finally, "end game" mode
 - H look for missing pieces aggressively
 - H send requests to all peers
 - H cancel requests after last pieces are collected

BitTorrent performance

- Modeling and analysis
 - H [QS04] Dongyu Qiu, R. Srikant. Modeling and Performance Analysis of Bit Torrent-Like Peer-to-Peer Networks. SIGCOMM 2004 [BitTorrent]

Fluid model

- $\triangleright x(t)$: number of downloaders, y(t): number of seeds
- $\triangleright \lambda$: arrival rate of new requests
- \bullet : the rate at which a downloader aborts the download
- $\blacktriangleright \mu$: uploading bandwidth of a peer
- $\triangleright \eta$: effectiveness parameter (Yang and de Veciana)
- ▶ c : downloading bandwidth of a peer
- $ightharpoonup \gamma$: seed departure rate

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \lambda - \theta x(t) - \min\{cx(t), \mu(\eta x(t) + y(t))\}$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \min\{cx(t), \mu(\eta x(t) + y(t))\} - \gamma y(t)$$

6/10/15

Steady-state performance

- dx(t)/dt=dy(t)/dt=0
 - If $\frac{1}{c} \ge \frac{1}{\eta} (\frac{1}{\mu} \frac{1}{\gamma})$, the downloading bandwidth is the constraint:

$$\bar{x} = \frac{\lambda}{c(1 + \frac{\theta}{c})}, \qquad \bar{y} = \frac{\lambda}{\gamma(1 + \frac{\theta}{c})}$$

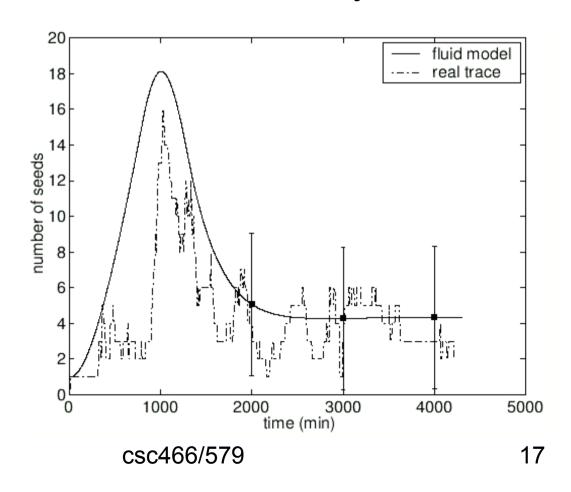
If $\frac{1}{c} \leq \frac{1}{\eta} (\frac{1}{\mu} - \frac{1}{\gamma})$, the uploading bandwidth is the constraint:

$$\bar{x} = \frac{\lambda}{\nu(1 + \frac{\theta}{\nu})}, \qquad \bar{y} = \frac{\lambda}{\gamma(1 + \frac{\theta}{\nu})},$$

where $\frac{1}{\nu} = \frac{1}{\eta} (\frac{1}{\mu} - \frac{1}{\gamma})$.

Analytical insights

- Intrinsic scalability
 - Little's law: average downloading time


$$T = \frac{1}{\theta + \beta}$$
, where $\frac{1}{\beta} = \max \left\{ \frac{1}{c}, \frac{1}{\eta} \left(\frac{1}{\mu} - \frac{1}{\gamma} \right) \right\}$

- ▶ Scalability: T is not a function of λ , the request arrival rate
- When the seed departure rate γ increases, T increases
- ▶ Even if $c \gg \mu$, the downloading bandwidth c may still be the bottleneck (e.g. if $\gamma < \mu$)
- ▶ Prior work assumes $c = \infty$ (motivated by the asymmetry in cable modem and DSL rates): doesn't capture the above effect

Evaluation results

Fluid model vs real trace
 H the number of sees in the system

6/10/15

More discussion

This lecture

- BitTorrent
 - [⊬] P2P swarming
 - **H** protocol overview
 - H performance analysis
- Explore further
 - H measurement-based modeling
 - H measurement-based performance analysis
 - **H** BitTorrent extensions
 - http://wiki.theory.org/BitTorrentSpecification

Next lecture

Next: Skype

H [BS06] Salman A. Baset and Henning Schulzrinne, "An Analysis of the Skype Peer-to-Peer Internet Telephony Protocol", IEEE Infocom 2006. [Skype]

Notice

H reading list and schedule are online

H check the list and submit reading summary on time

6/10/15 csc466/579 20

^{*} connext->wiki->reading groups and schedule; papers announced a week before due

Reading summaries

- Challenge the paper presented by the other group
 - H The problem(s)

 - H Major (at least three) strengths
 - H Major (at least three) Weaknesses, then and now
 - H Possible improvement
- Template
 - H http://www.cs.uvic.ca/~pan/csc466/rs.txt (Text)
- H http://www.cs.uvic.ca/~pan/csc466/rs.tex (LaTeX) csc466/579 21

Midterm on June 15, 2015

Materials

- H lectures and in-class Q&A and discussions
- H papers discussed during the lectures
- H connex->lectures->required reading (10 papers)
- H three extra papers: [Pastry], [Kademlia], [Tapestry]
- Open papers/notes exam
 - H a computer without Internet connection is allowed
 - Hi.e., cannot get help outside the classroom
- H neither from other students in the classroom csc466/579 22