6/10/15

CSc 360
Operating Systems
Semaphores

Jianping Pan
Summer 2015

CSc 360 1

Dekker’s solution

* requirements: mutex, no deadlock, no livelock

* Process Pi
while (true) {
flag[i] = true;
while (flag[j]) {
if (turn == 7J) {
flag[i] = false;
while (turn == 7J); // wait
flag[i] = true;
}
}
/* critical section */
turn = j;
flag[i] = false;

/* remainder section */

Be polite: meet all three requirements; solve the

critical-section é)roblem for two processes
6/10/15 Sc 360 2

Review: synchronization

 Peterson’s solution

— software-based solution
do {
flag [i]:= true;
turn = j;
while (flag [j] and turn ==) ;
[* critical section */
flag [i] = false;
[* remainder section */
} while (1);

—assumption? limitation?
6/10/15 CSc 360 3

Hardware-based: “test-and-set”

* Test and set value atomically

boolean TestAndSet(boolean &target) {
boolean rv = target;
target = true;

return rv;

Loolean lock = false; /* shared variable */

do {
while (TestAndSet(lock)) ;
[* critical section */
lock = false;
/* remainder section */

}

9/ problem??
6/ 10/1 CSc 360 4

Hardware-based: “swap”

* Exchange value atomically
void Swap (boolean *a, boolean *b)

boolean temp = *a;
*a = *Db;
*b = temp:

while (true) {
key = TRUE;
while (key == TRUE) Swap (&lock, &key);
/| critical section
lock = FALSE;
/l remainder section

6/10/13 CSc 360 5 .
Q: swap without temp?

Software-based: mutex

* Mutual exclusion (mutex)

— only two states
* unlocked: there is no thread In critical section
* locked: there is one thread in critical section

— state change is atomic

* if it is unlocked, it can be locked by at most one
thread when entering the critical section

* if it is locked, it can “only” be unlocked by the
locking thread when leaving the critical section

6/10/15 CSc 360 6

Mutex: more

* Mutex procedures
— create a mutex variable (initially unlocked)

— (some threads) attempt to lock the mutex
* only one can lock the mutex
— others may be blocked and waiting

* the one with the mutex
— execute the critical section
— unlock the mutex variable eventually

— destroy the mutex variable

o/10715 5¢ 360 see %thread_mutex_*()

Software-based: semaphores

* Semaphore API

— Semaphore S — integer variable
* binary semaphore
* counting semaphore

— two indivisible (atomic) operations

* also known as P() and V()
wait (S):

while S<=0 do no-op;
S--;

signal (S):
S++;

6/10/15 CSc 360
° Q: l%usy—wait problem?

Using semaphores

 Mutual exclusion
— binary semaphore
— shared data

semaphore mutex; // initially mutex =1

— process Pi
do

wait(mutex);
[* critical section */

signal(mutex);
/* remainder section */
} while (1);

* Resource access

— counting semaphore

— initially, the number of resource instances
6/10/15 CSc 360 9

Semaphore implementation

* Semaphores without busy waiting
— block(): block the caller process

— wakeup(): wakeup another process
wait(S):

S.value--;

if (S.value <0) {

add this process to S.L;
block();

}

signal(S):
S.value++;

if (S.value <= 0) {

remove a process P from S.L;
wakeup(P);

6/10/15 CSc 360 10

More on using semaphores

* Ordered execution
— initially, flag = 0;
—P1:...; do_me_first, signal (flag);
- P2: ...; wait (flag); then follow_on;
* Caution

— deadlock
* wait (A); wait (B); ...; signal (A); signal (B);
* wait (B); wait (A); ...; signal (B); signal (A);

— starvation
6/10/15 CSc 360 11

The producer-consumer problem

* With semaphore

while (true) { while (true) {
/I produce an item wait (full);
wait (empty);

wait (mutex);

// remove an item
signal (mutex);
signal (empty);

// consume the item

wait (mutex);

/I add the item to the buffer
signal (mutex);

signal (full);

) }
6/10/15 CSc 360 12

The readers-writers problem

* First readers-writers problem

— no readers kept waiting unless writer is writing
while (true) {

while (true) { wait (mutex) ;
. readcount ++ ;
wait (wrt) ; if (readcount == 1) wait (wrt) ;
// writing is performed signal (mutex);
. // reading is performed
signal (wrt) ; wait (mutex) ;
) readcount - - ;

if (readcount == 0) signal (wrt) ;
signal (mutex) ;

6/10/15 CSc 360 13

Example: dining philosophers

« Shared data @3 c@

— Initially all values are 1
semaphore chopstick[5];

* Philosopher i @O

do {
wait(chopstick{i])
wait(chopstick[(i+1) % 5]) @

eat
signa.lié:hopstick[i]);
signal(chopstick[(i+1) % 5]);
think
L while (1),

6/10/15 CSc 360 14
Q: any possible problems?

This lecture

* Hardware-assisted synchronization
— test-and-set and swap

* Mutex
* Semaphores

— with(out) busy waiting
* Properties

— mutual exclusion, making process,

bounded waliting
6/10/15 CSc 360 15

Next lecture

* More on synchronization
—read OSC7Ch6

6/10/15 CSc 360

16

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

