
6/8/15 CSc 360 1

CSc 360
Operating Systems

Process Synchronization

Jianping Pan

Summer 2015

6/8/15 CSc 360 2

The need for synchronization

• Multi-programming
– multi-process

• process communication
• shared memory or message passing

– multi-thread

• CPU scheduling
• Cooperating processes/threads

– e.g., the “producer-consumer” problem
• cannot consume the things not produced yet

6/8/15 CSc 360 3

The producer-consumer problem

• Solutions so far
– bounded buffer

• in, out variables; full, empty conditions
• N buffer space, N-1 utilized at most

– first-in-first-out queue
• FIFO variable

• A simpler solution
– to fully utilize the circular buffer
– use a “counter” variable

6/8/15 CSc 360 4

The “counter” solution
while (true) {
 /* produce an item and put in nextProduced */
 while (count == BUFFER_SIZE) ; // do nothing
 buffer [in] = nextProduced;
 in = (in + 1) % BUFFER_SIZE;
 count++;
}

while (true) {
 while (count == 0) ; // do nothing
 nextConsumed = buffer[out];
 out = (out + 1) % BUFFER_SIZE;
 count--;
 /* consume the item in nextConsumed */
}

Producer

Consumer

Q: what's the problem?

6/8/15 CSc 360 5

Race condition

• E.g., increment a counter (shared variable)
– read the counter (from memory)
– increment by one (at CPU)
– write the counter

• How about two threads?
– sharing only one counter

• non-deterministic result: R1W1R2W2; R1R2W1W2

• “There is something not to be (always) shared”

e.g., counter=5 initially

Q: how about count++ and count-- concurrently?

6/8/15 CSc 360 6

Critical section

• Critical section
– code section accessing shared data
– only one thread executing in critical section

• only one thread accessing the shared data: serialize

– choose the right (size of) critical section!

• Approach: exclusion (lock)
– if locked, wait!
– if not lock, lock (and later, unlock)

6/8/15 CSc 360 7

Properties of “solutions”

• Mutual exclusion
– no more than one process in the critical section

• Making process
– if no process in the critical section, one can in

• Bounded waiting
– for processes that want to get in the critical

section, their waiting time is bounded

deadlock and livelock

6/8/15 CSc 360 8

Problem formulation
• Only 2 processes, P0 and P1

• General structure of process Pi (other process Pj)
do {

entry section
critical section

exit section
remainder section

} while (1);

• Processes may share some common variables to
synchronize their actions
– do not get into the loop!

6/8/15 CSc 360 9

Algorithm 1
• Shared variables

– int turn; // initially turn = 0

– turn == i: Pi can enter its critical section

• Process Pi

do {
while (turn != i) ; // wait

critical section
turn = j;

remainder section
} while (1);

• Fate on other’s hands: any problems?

6/8/15 CSc 360 10

Algorithm 2
• Shared variables

– boolean flag[2];
initially flag [0] = flag [1] = false.

– flag [i] = true : Pi ready to enter its critical section

• Process Pi

do {
flag[i] := true;
while (flag[j]) ;

critical section
flag [i] = false;

remainder section
} while (1);

• Fight for access: any problems?

6/8/15 CSc 360 11

Dekker’s solution
• Combined shared variables of Algorithms 1 and 2
• Process Pi

• Be polite: meet all three requirements; solve the
critical-section problem for two processes

while (true) {
 flag[i] = true;
 while (flag[j]) {
 if (turn == j) {
 flag[i] = false;
 while (turn == j); // wait
 flag[i] = true;
 }
 }
 /* critical section */
 turn = j;
 flag[i] = false;
 /* remainder section */
}

6/8/15 CSc 360 12

Peterson’s solution
• A simpler solution

– combined shared variables of Algorithms 1 and 2

• Process Pi

do {
flag [i]:= true;
turn = j;
while (flag [j] and turn == j) ; // wait

 /* critical section */
flag [i] = false;
/* remainder section */

} while (1);

• Meet all three requirements; solve the critical-
section problem for two processes

6/8/15 CSc 360 13

This lecture

• Process synchronization
– the producer-consumer problem
– software solution for 2 processes

• Peterson’s solution

• Explore further
– Lamport’s bakery algorithm

• for n processes

• it’s time to google!

6/8/15 CSc 360 14

Next lecture

• Process synchronization
– other alternatives (read OSC7Ch6)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

