Advanced Computer Networks

P2P Systems: Beyond DHT

Jianping Pan Summer 2015

C/S vs P2P

Client-server

^Ĥ server is well-known^Ĥ server may become a bottleneck

• Peer-to-peer

H everyone is a (potential) server

- intrinsically scalable
- H how to match a "server" for a request
 - e.g., locate a file by its name
- ^H search is a challenge

• put() and get(), eta66/579

Review: structured P2P

- Structured P2P networks
 - H Chord (MIT)
 - H CAN (Berkeley, ICSI)
 - ^H and more: Pastry (Microsoft, Rice), Tapestry (Berkeley), Kademlia (NYU)
 - included in the midterm reading materials
- Reading groups formed on connex
 - R1 announced on connex too!
 - see reading guideline and template
- Unstructured P2P networks

6/8/15 csc466/579 3 http://www.cs.uvic.ca/~pan/csc466/readng.txt http://www.cs.uvic.ca/~pan/rs.txt (or tex)

Chord

- Virtual circular space
 H consistent hashing
 H node ID, object key
- With successor list
 H O(n) hops
 H O(1) entry
- With "finger" table
 H O(log n) hops
 H O(log n) entries
 6/8/15 csc466/579

Content Addressable Network

- Virtual d-torus space
 н consistent hashing
 н e.g., 2-d: h_x(key), h_y(key)
- Routing performance
 H O(d n^{1/d}) hops
 U O(d) entries
 - H O(d) entries
 - neighborhood routing

6

6/8/15

Today: unstructured P2P

- Structured P2P networks: applications

 H Chord: CFS (coop FS)
 H Pastry: PAST (file system), SCRIBE (pub/sub)
 H OpenDHT: DHT as a service over Planet-lab
- Unstructured P2P networks
 - H Napster: one of the fastest growing Internet apps
 - H Gnutella: first fully distributed one
 - H BitTorrent: still most popular now?
 - H Skype: P2P VoIP *

6/8/15

csc466/579

* after Microsoft acquisition?

Napster

- Napster: C/S + P2P
 - H connect to Napster directory server
 - H upload a list of file information
 - $\ensuremath{^{\text{H}}}$ send keyword queries to the server
 - H receive a list of "hosts" from the server
 - H choose the "best" host (with ping)
 - H send the request to the host
 - $\ensuremath{^{\text{ H}}}$ receive the file from the host, or try the next host
- Discussion: critics on Napster

H from the viewpoint of network protocol

csc466/579

8

Explore further: http://david.weekly.org/code/napster.php3

Gnutella: P2P + flooding

^Ĥ no centralized server

even for string search

- H send keyword queries to up to 7 neighbors
 - if a neighbor can answer, reverse the query path
 - if not, the neighbor sends queries to its neighbors
 - maximum hops: e.g., 7
- H controlled flooding
 - no same queries sent by the same node twice
 - the same queries can be received more than once
- Q: pros and cons vs Napster?

Bootstrap

Need to know at least one "working" node
 H initially, embedded in software
 H host cache from working nodes

• the dominant approach

H other means: e.g., manual configuration

Connect to known nodes

H Based on TCP/IP, ASCII strings

- H GNUTELLA CONNECT/0.4\n\n
- H GNUTELLA OK\n\n

H only a small set of directly connected nodes

Protocol descriptors

Descriptor ID

H global unique ID (GUID)

- Payload descriptor
- TTL

H at each hop: TTL-H when TTL == 0, drop

• Hops

H TTL(0) = TTL + Hops

Explore further: http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf

PING-PONG

• PING (0x00)

^Ĥ probe for other nodes^Ĥ null payload

• PONG (0x01)

^Ĥ response to PING

it possible to have multiple PONGs for one PING
 H reverse PING path

^H contain the IP address of the responder

H and the number/amount of files to be shared

PING-PONG traffic should be minimized

QUERY-HIT

• QUERY (0x80)

H minimum speed in Kbps
 H search string

• QUERYHIT (0x81)

H reverse QUERY path

- H contain: number of hits
- H port number and IP address of the "host"
- н́ "supported" speed in Kbps
- ^H search results: file index, file size, file name
- $^{\rm H}$ and the GUID of the responder

File retrieval

• File retrieval

- ^H over HTTP
- ^H request from the QUERY node to QUERYHIT node
 - fail if QUERYHIT node is behind firewall/NAT

• PUSH (0x40)

- H contain: the GUID of the QUERYHIT node
- ^H file index at the QUERYHIT node
- H IP address at the QUERY node
- ^H and port number at the QUERY node
- H Q: if QUERY is also behind firewall/NAT?

Discussion

• Critics on Gnutella/0.4

H hints

- node structure
- message handling
- load balance
- bootstrap process

Improving Gnutella

• Node structure

H from flat to hierarchical

• GNUTELLA/0.6

^H more HTTP/1.0 like

• Ultra-peer: handle message forwarding

H qualification: not behind firewall/NAT

^H sufficient computing and storage resources

^H and reliable network condition

^Ĥ leaf nodes only connects to ultra-peer nodes

• Also in KaZaA: super-node

6/8/15 csc466/579 16 [CRBLS03] Yatin Chawathe, S. Ratnasamy, Lee Breslau, Nick Lanham, Scott Shenker, "Making Gnutella-like P2P Systems Scalable", Sigcomm 2003. Gnutella

GNUTELLA/0.6

- Ultra-leaf node hierarchy
- Other features
 - н GWebCache
 - working nodes discovery
 - ^H cache PONG, QUERYHIT
 - H flow control, direct response to ultra-peer
 - Iimit/reduce the amount of message handling
 H PUSH through ultra-peer
 - ^Ĥ reject with X-Try
 - be more friendly

́ H́ BYE (0x02) 6/8/15

csc466/579

17

Explore Further: http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html

Non-flooding search

Random walk

H unbiased random walk

- Q: pros and cons?
- H biased random walk
 - toward better connected nodes
 - which node is "better"?
- Network-aware search

H network-aware cluster

This lecture

Gnutella

H full distributed, flooding based

- H ways to improve Gnutella
 - Gia and why it is better
- Explore further
 - Η in "8. REFERENCES"
 - papers cited by this one
 - ^Ĥ in scholar.google.com
 - papers citing this paper
 - H "Should we build Gnutella on a structured overlay?"

Next lectures

BitTorrent

- H [QS04] Dongyu Qiu, R. Srikant. Modeling and Performance Analysis of Bit Torrent-Like Peer-to-Peer Networks. SIGCOMM 2004 [BitTorrent]
- Skype
 - H [BS06] Salman A. Baset and Henning Schulzrinne, "An Analysis of the Skype Peer-to-Peer Internet Telephony Protocol", IEEE Infocom 2006. [Skype]
- Notice

H reading list and groups are now on connex

H connex \rightarrow leftbar \rightarrow wiki \rightarrow reading groups