CSc 360 Operating Systems More on Scheduling

Jianping Pan
Summer 2015

P2 deliverable 1 (draft design)

- Due today 5pm through connex
- connex remains open until midnight
- do submit one copy before 5pm
- the last submitted one be evaluated
- answer questions listed on p2 spec
- how to use pthread, mutex, condition variable?
- how to model train, main track, signal to go?
- include the final design in deliverable 2
- grading [5]: (draft + final) / 2

6/4/15
CSc 360
2

* tomorrow, tutorial instructor will go through p2 spec and your design

Review: scheduling

- Scheduling algorithms - FCFS
- "convoy effect"
- SJF
- optimal in terms of ...
- "starvation"
- priority
- RR
- preemptive vs non-preemptive

6/4/15 CSc 360

Multi-queue scheduling

- "No one fits all"
- Multi-queue approach
- foreground queue
- e.g., RR; better fairness
- background queue

interactive editing processes
batch processes
- e.g., FCFS; more efficient
- Inter-queue scheduling
- priority, time sharing (e.g., " 80% rule")

Multi-queue with feedback

- Multi-queue
- number of queues
- queuing algorithm for each queue
- Multi-queue with feedback
- promote jobs
- demote jobs
- example

Multi-processor queuing

- Load balance between processors
- cooperation and communication
- Asymmetric multiprocessing
- one master scheduler
- Symmetric multiprocessing
- cooperative schedulers
- processor affinity: try to stick with one
- load balancing: push or poll migration

CSc 360
6

* join the shortest queue? join the shorter of two queues? Q: multi-core?

More on scheduling

- Thread scheduling
- local: user -> kernel thread
- e.g., within a process
- global: kernel thread -> CPU
- e.g., across the system
- Algorithm evaluation
- queuing analysis
- Little's law: n = Vambda * W

6/4/T5 Simulation CSc 360

Linux scheduling

- Scheduler
- O(n): global run queue (Linux 2.4)
- n : number of processes
- O(1): double linked list (Linux 2.6)
- active/expired set
- 140 priority levels
- realtime (0-99), user (100-139, nice/quantum sizes)
- Interactive vs CPU-bound: interactivity
* multi-core/CPU scheduling 360
Q: completely fair scheduler?

Pthread scheduling

- pthread_attr_setschedpolicy ();
- regular, non-realtime (nice-able)
- realtime, round-robin (preemptive, privileged)
- realtime, FCFS (non-preemptive, privileged)
- pthread_attr_setschedparam ();
- pthread_attr_setscope ();
- scheduling within a process
- scheduling for the entire system

This lecture

- More on scheduling
- multi-queue scheduling
- multi-processor scheduling
- scheduling evaluation
- Little's law, simulation
- Explore further
- list process priority: /usr/bin/top
- change priority: /bin/nice

Next lecture

- Process synchronization
- read OSC7 Chapter 6 (or OSC6 Chapter 7)

