CSc 360 Operating Systems More on Scheduling

> Jianping Pan Summer 2015

6/4/15

CSc 360

P2 deliverable 1 (draft design)

- Due today 5pm through connex
 - connex remains open until midnight
 - do submit one copy before 5pm
 - the last submitted one be evaluated
 - answer questions listed on p2 spec
 - how to use pthread, mutex, condition variable?
 - how to model train, main track, signal to go?
 - include the final design in deliverable 2

• grading [5]: (draft + final) / 2

6/4/15 CSc 360 2 * tomorrow, tutorial instructor will go through p2 spec and your design

Review: scheduling

- Scheduling algorithms
 - FCFS
 - "convoy effect"
 - SJF
 - optimal in terms of ...
 - "starvation"
 - priority
 - -RR

- preemptive vs non-preemptive 6/4/15 CSc 360 3

Multi-queue scheduling

- "No one fits all"
- Multi-queue approach
 - foreground queue
 - e.g., RR; better fairness
 - background queue
 - e.g., FCFS; more efficient
- Inter-queue scheduling
 - priority, time sharing (e.g., "80% rule")

Multi-queue with feedback

- Multi-queue
 - number of queues
 - queuing algorithm for each queue
- Multi-queue with feedback

CSc 360

- promote jobs
- demote jobs
- example

6/4/15

Multi-processor queuing

- Load balance between processors
 cooperation and communication
- Asymmetric multiprocessing – one master scheduler
- Symmetric multiprocessing
 - cooperative schedulers
 - processor affinity: try to stick with one
 - load balancing: push or poll migration

6/4/15 CSc 360 6 * join the shortest queue? join the shorter of two queues? Q: multi-core?

More on scheduling

- Thread scheduling
 - local: user -> kernel thread
 - e.g., within a process
 - global: kernel thread -> CPU
 - e.g., across the system
- Algorithm evaluation
 - queuing analysis
 - Little's law: n = \lambda * W

 $_{6/4/T5}$ simulation _{CSc 360}

Linux scheduling

- Scheduler
 - O(n): global run queue (Linux 2.4)
 - n: number of processes
 - O(1): double linked list (Linux 2.6)
 - active/expired set
- 140 priority levels

- realtime (0-99), user (100-139, nice/quantum sizes)
- Interactive vs CPU-bound: interactivity

6/4/15 CSc 360 * multi-core/CPU scheduling Q: completely fair scheduler?

Pthread scheduling

- pthread_attr_setschedpolicy ();
 - regular, non-realtime (nice-able)
 - realtime, round-robin (preemptive, privileged)
 - realtime, FCFS (non-preemptive, privileged)

9

- pthread_attr_setschedparam ();
- pthread_attr_setscope ();
 - scheduling within a process
 - scheduling for the entire system

This lecture

- More on scheduling
 - multi-queue scheduling
 - multi-processor scheduling
 - scheduling evaluation
 - Little's law, simulation
- Explore further
 - list process priority: /usr/bin/top
 - change priority: /bin/nice

6/4/15 CSc 360 10

Next lecture

Process synchronization
– read OSC7 Chapter 6 (or OSC6 Chapter 7)