
5/27/15 CSc 360 1

CSc 360
Operating Systems

Mutual Exclusion

Jianping Pan

Summer 2015



5/27/15 CSc 360 2

Review: threads

• Thread vs process
– easy to share info btw threads in one process

• share and protect!

• Create and terminate threads
– start routine, argument passing

• threads are executed “in parallel”

• Join and detach threads
– synchronization

• “wait”



5/27/15 CSc 360 3

Shared or not shared?

• E.g., increment a counter (shared variable)
– read the counter (from memory)
– increment by one (at CPU)
– write the counter

• How about two threads?
– sharing only one counter

• non-deterministic result: R1W1R2W2; R1R2W1W2

• “There is something not to be (always) shared”



5/27/15 CSc 360 4

Critical section

• Critical section
– code section accessing shared data
– only one thread executing in critical section

• only one thread accessing the shared data: serialize

– choose the right (size of) critical section!

• Approach: exclusion (lock)
– if locked, wait!
– if not lock, lock (and later, unlock)



5/27/15 CSc 360 5

Mutual exclusion

• Mutual exclusion (mutex)
– only two states

• unlocked: there is no thread in critical section

• locked: there is one thread in critical section

– state change is atomic
• if it is unlocked, it can be locked by at most one 

thread when entering the critical section

• if it is locked, it can “only” be unlocked by the 
locking thread when leaving the critical section



5/27/15 CSc 360 6

Mutex: more

• Mutex procedures
– create a mutex variable (initially unlocked)
– (some threads) attempt to lock the mutex

• only one can lock the mutex
– others may be blocked and waiting

• the one with the mutex
– execute the critical section
– unlock the mutex variable eventually

– destroy the mutex variable



5/27/15 CSc 360 7

Mutex with pthread

• Create mutex
– int pthread_mutex_init (mutex, attributes);

• Attempt to lock
– int pthread_mutex_lock (mutex);

• if unlocked, lock and return immediately

• if locked
– “fast” lock: blocked until the mutex is unlocked
– “test” lock: return immediately with error

– “recursive” lock: “over”-lock

» multiple pthread_mutex_unlock() to unlock



5/27/15 CSc 360 8

Mutex with pthread: more

• Try to lock
– int pthread_mutex_trylock (mutex);

• if locked, return immediately with error code

• Unlock
– int pthread_mutex_unlock (mutex);

• if “recursive” lock, multiple pthread_mutex_unlock necessary 
to fully unlock the mutex

• Destroy mutex
– int pthread_mutex_destroy (mutex);



5/27/15 CSc 360 9

Condition variable

• Used together with mutex
– mutex: control access to shared data
– condition: synchronize by condition “predict”

• Wait for condition
– pthread_cond_wait (condition, mutex);

• automatically unlock and wait for signal

• on signal, wake up and automatically lock

• Signal or broadcast
– pthread_cond_signal (condition);



5/27/15 CSc 360 10

Example: mutex and condition

• Main thread
– global variable 
– create mutex and condition variable

• Wait to be signaled
– pthread_mutex_lock();
– pthread_cond_wait();

– pthread_mutex_unlock();

• Send the signal
– pthread_mutex_lock();
– pthread_cond_signal();

– pthread_mutex_unlock();



5/27/15 CSc 360 11

This lecture

• Mutex and condition
– mutex: binary access control

• locked or unlocked

– condition: access control by condition
• used together with mutex

• Explore further
– multi-thread RSI?

• compared with multi-process RSI?
– P2?



5/27/15 CSc 360 12

Next lecture

• CPU scheduling
– read OSC7 Chapter 5 (or OSC6 Chapter 6)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

