
5/20/15 CSc 360 1

CSc 360
Operating Systems

Inter-process communications

Jianping Pan

Summer 2015

5/20/15 CSc 360 2

Review: the need to communicate

• Independent process
– standalone process

• Cooperating process
– affecting or affected by other processes

• sharing, parallel, modularity, convenience

• Process communication
– shared memory
– message passing

5/20/15 CSc 360 3

Producer-consumer problem

• Producer
– produce info to be consumed by consumer

• Consumer
– consume information produced by producer

• Buffer
– unbounded: unlimited buffer size
– bounded: limited buffer size

• more practical

P Cbuffer

5/20/15 CSc 360 4

Shared memory solution

• Shared memory: memory mapping
– allocated in the calling process’s address space
– attached to other processes’ address space

• Data structure: bounded, circular
#define BUFFER_SIZE 10

Typedef struct {. . .} item;

item buffer[BUFFER_SIZE];

int in = 0; int out = 0;

– empty, full, # of items
* what's the limitation of such a ring buffer?

5/20/15 CSc 360 5

Shared memory: producer

• Producer
– wait for an available space
– update in
item nextProduced;
while (true) {

/* produce an item in nextProduced */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE; }

* how to fully utilize the ring buffer?

5/20/15 CSc 360 6

Shared memory: consumer

• Consumer
– wait for an available item
– update out
item nextConsumed;
while (1) {
while (in == out)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
/* consume the item in nextConsumed */ }

* how procedure and consumer synchronize in this example?

5/20/15 CSc 360 7

• Message passing: an interface
• Send message

– send()

• Receive message
– receive()

• Communication link
– physical (e.g., memory, bus, network)
– logical (e.g., logical properties)

Message passing

P C
send()

receive()

5/20/15 CSc 360 8

Message passing vs shared memory

5/20/15 CSc 360 9

Direct communication

• Send a message to process C
– send (C, message)

• Receive a message from process P
– receive(P, message)

• Communication links
– one link for one pair
– one pair needs one link

• usually bi-directional

* number of links?

5/20/15 CSc 360 10

Indirect communication

• Send a message to mailbox A
– send(A, message)

• Receive a message from mailbox A
– receive(A, message)

• Communication links and mailboxes
– one link by many pairs
– many links for one pair

• mailbox owner
A B

* number of links?

5/20/15 CSc 360 11

Synchronization

• Blocking vs non-blocking
– blocking send

• caller blocked until send is completed

– blocking receive
• caller blocked until receive is finished

– non-blocking send
– non-blocking receive

• Blocking: a means of synchronization

5/20/15 CSc 360 12

Buffering

• Buffer: to hold message temporary
– zero capacity

• sender blocks until receiver is ready

• otherwise, message is lost

– bounded capacity
• when buffer is full, sender blocks

• when buffer is not full, no need to block sender

– unbounded capacity
• no need to block sender

5/20/15 CSc 360 13

This lecture

• IPC
– shared memory
– message passing

• direct vs indirect

• blocking vs non-blocking
• buffered vs non-buffered

• Explore further
– self-test questions in textbook

5/20/15 CSc 360 14

Next lecture

• Threads
– read OSC7 Chapter 4 (or OSC6 Chapter 5)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

