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Linux computers in ECS 2427!

* No longer remote accessible
— due to the “flexilab” w/ hypervisors
— both Linux and Win images

* Drop-in possible
— see schedule

* Other alternatives

— linux.csc.uvic.ca

— auto-load-balanced to multiple machines
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Review: process

* Process vs program
— active vs passive entity

* Process control block
— context switching

* Process scheduling
—long-term scheduling
— short-term scheduling

— medium-term scheduling
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Process creation

* Creating processes
— parent process: create child processes
— child process: created by its parent process

* Process tree
— recursive parent-child relationship; why tree?
— [usr/bin/pstree

* Process ID (PID) and Parent PID (PPID)

— usually nonnegative integer
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Parent vs child processes

* Process: running program + resources

* Resource sharing: possible approaches
— all shared
— some shared (e.g., read-only code)
— nothing shared”

* Process execution: possible approaches

— parent waits until child finishes

— parent and child run concurrently”
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fork(), exec*(), wait()

* Create a child process: fork()
—return code < 0: error (in “parent” process)
—return code = 0: you're in child process

— return code > 0: you're in parent process
* return code = child’s PID

* Child process: load a new program
—exec”(): front-end for execve(file, arg, environ)

* Parent process: wait() and waitpid()
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parent // \ resumes
> wait >

int main ()

{

exec() = exit()
/ X

Pid t pid;
/* fork another process */
pid = fork(); Example
if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
exit (-1);
}
else if (pid == 0) { /* child process */
execlp ("/bin/1ls", "ls", NULL) ;
}
else { /* parent process */
/*parent will wait for the child to complete*/
wait (NULL) ;
printf ("Child Complete") ;
exit (0) ;
}
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Process termination

* Terminate itself: exit()
— report status to parent process
— release allocated resources

* Terminate child processes: kill(pid, signal)

— actually send a signal to the child

* child resource exceeded, child process no long
needed, and so on

— parent is exiting
 cascading termination, or find another parent
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Process communication

* Independent process
— standalone process

« Cooperating process

— affected by or affecting other processes
* sharing, parallel, modularity, convenience

* Process communication
— shared memory

— message passing
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Message passing vs
shared memory

* Overhead
process A M process A

¢ PrOteCthn shared

process B M 1 process B

LI

kernel M kernel

(a) (b)
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This lecture

* Process operations

— process creation
* process tree

— process termination
— the need for inter-process communication

* Explore further

— /bin/ps, /usr/bin/top, /usr/bin/pstree

—how does a child process find its parent’s PID?
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Next lecture

* Inter-process communication
—read OSC7 Chapter 3 (or OSC6 Chapter 4)
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