
5/14/15 CSc 360 1

CSc 360
Operating Systems
Process Operations

Jianping Pan

Summer 2015

5/14/15 CSc 360 2

Linux computers in ECS 242?!

• No longer remote accessible
– due to the “flexilab” w/ hypervisors
– both Linux and Win images

• Drop-in possible
– see schedule

• Other alternatives
– linux.csc.uvic.ca
– auto-load-balanced to multiple machines

5/14/15 CSc 360 3

Review: process

• Process vs program
– active vs passive entity

• Process control block
– context switching

• Process scheduling
– long-term scheduling
– short-term scheduling
– medium-term scheduling

5/14/15 CSc 360 4

Process creation

• Creating processes
– parent process: create child processes
– child process: created by its parent process

• Process tree
– recursive parent-child relationship; why tree?
– /usr/bin/pstree

• Process ID (PID) and Parent PID (PPID)
– usually nonnegative integer

5/14/15 CSc 360 5

Process tree
• sched (0)

– init (1)
• all user processes

– pageout
• memory

– fsflush
• file system

pstree on linux.csc.uvic.ca

5/14/15 CSc 360 6

Parent vs child processes

• Process: running program + resources
• Resource sharing: possible approaches

– all shared
– some shared (e.g., read-only code)
– nothing shared*

• Process execution: possible approaches
– parent waits until child finishes
– parent and child run concurrently*

5/14/15 CSc 360 7

fork(), exec*(), wait()

• Create a child process: fork()
– return code < 0: error (in “parent” process)
– return code = 0: you’re in child process
– return code > 0: you’re in parent process

• return code = child’s PID

• Child process: load a new program
– exec*(): front-end for execve(file, arg, environ)

• Parent process: wait() and waitpid()

5/14/15 CSc 360 8

int main()
{
 Pid_t pid;
/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
exit(-1);

}
else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */
/*parent will wait for the child to complete*/

wait (NULL);
printf ("Child Complete");
exit(0);

}
}

Example

5/14/15 CSc 360 9

Process termination

• Terminate itself: exit()
– report status to parent process
– release allocated resources

• Terminate child processes: kill(pid, signal)
– actually send a signal to the child

• child resource exceeded, child process no long
needed, and so on

– parent is exiting
• cascading termination, or find another parent

5/14/15 CSc 360 10

Process communication

• Independent process
– standalone process

• Cooperating process
– affected by or affecting other processes

• sharing, parallel, modularity, convenience

• Process communication
– shared memory
– message passing

5/14/15 CSc 360 11

Message passing vs
shared memory

• Overhead
• Protection

5/14/15 CSc 360 12

This lecture

• Process operations
– process creation

• process tree

– process termination
– the need for inter-process communication

• Explore further
– /bin/ps, /usr/bin/top, /usr/bin/pstree
– how does a child process find its parent’s PID?

5/14/15 CSc 360 13

Next lecture

• Inter-process communication
– read OSC7 Chapter 3 (or OSC6 Chapter 4)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

