5/14/15

CSc 360
Operating Systems
Process Operations

Jianping Pan
Summer 2015

CSc 360 1

Linux computers in ECS 2427!

* No longer remote accessible
— due to the “flexilab” w/ hypervisors
— both Linux and Win images

* Drop-in possible
— see schedule

* Other alternatives

— linux.csc.uvic.ca

— auto-load-balanced to multiple machines
5/14/15 CSc 360 2

Review: process

* Process vs program
— active vs passive entity

* Process control block
— context switching

* Process scheduling
—long-term scheduling
— short-term scheduling

— medium-term scheduling
5/14/15 CSc 360

Process creation

* Creating processes
— parent process: create child processes
— child process: created by its parent process

* Process tree
— recursive parent-child relationship; why tree?
— [usr/bin/pstree

* Process ID (PID) and Parent PID (PPID)

— usually nonnegative integer
5/14/15 CSc 360 4

Process tree
* sched (0) et

R EDREINED
* all user processes

— pageout i
° memOI'y teé?c?tiia}e??gn

T foI u S h Csh sdt_shel
pid = 7778 pid = 340

* file system

sSnmpo Csh
sshd S*[sshd——sshd sftp-server] pid = 1400

sshd—-sshd—»bash—-ss1
sshd—=ss Netscape emacs
. et ree pid = 7785 pid = 8105
] N - Is

=

cat
pid = 2123 pid = 2536

sshd——sshd—hbash

shi bhash—mutt
sshc tcsh—n —||1'-|1- 3 60
sshd—tcsh pstree on linux.csc.uvic.ca

)

Parent vs child processes

* Process: running program + resources

* Resource sharing: possible approaches
— all shared
— some shared (e.g., read-only code)
— nothing shared”

* Process execution: possible approaches

— parent waits until child finishes

— parent and child run concurrently”
5/14/15 CSc 360 6

fork(), exec*(), wait()

* Create a child process: fork()
—return code < 0: error (in “parent” process)
—return code = 0: you're in child process

— return code > 0: you're in parent process
* return code = child’s PID

* Child process: load a new program
—exec”(): front-end for execve(file, arg, environ)

* Parent process: wait() and waitpid()
5/14/15 CSc 360 7

parent // \ resumes
> wait >

int main ()

{

exec() = exit()
/ X

Pid t pid;
/* fork another process */
pid = fork(); Example
if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
exit (-1);
}
else if (pid == 0) { /* child process */
execlp ("/bin/1ls", "ls", NULL) ;
}
else { /* parent process */
/*parent will wait for the child to complete*/
wait (NULL) ;
printf ("Child Complete") ;
exit (0) ;
}
b 5/14/15 CSc 360 8

Process termination

* Terminate itself: exit()
— report status to parent process
— release allocated resources

* Terminate child processes: kill(pid, signal)

— actually send a signal to the child

* child resource exceeded, child process no long
needed, and so on

— parent is exiting
 cascading termination, or find another parent
5/14/15 CSc 360 9

Process communication

* Independent process
— standalone process

« Cooperating process

— affected by or affecting other processes
* sharing, parallel, modularity, convenience

* Process communication
— shared memory

— message passing
5/14/15 CSc 360 10

Message passing vs
shared memory

* Overhead
process A M process A

¢ PrOteCthn shared

process B M 1 process B

LI

kernel M kernel

(a) (b)
5/14/15 CSc 360 11

This lecture

* Process operations

— process creation
* process tree

— process termination
— the need for inter-process communication

* Explore further

— /bin/ps, /usr/bin/top, /usr/bin/pstree

—how does a child process find its parent’s PID?
5/14/15 CSc 360 12

Next lecture

* Inter-process communication
—read OSC7 Chapter 3 (or OSC6 Chapter 4)

5/14/15 CSc 360 13

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

