CSc 360 Operating Systems Course Overview

> Jianping Pan Summer 2015

5/6/15

CSc 360

Assignment 0

- Due on Friday, May 8th, 2015
- Send an email to pan@uvic.ca
 - From you@uvic.ca (or you@csc.uvic.ca)
 - Subject: [csc360] A0
 - name, student number, academic program
 - things you already known in OS
 - things you want to know in OS
 - issues with logistics, course rep, USRA/JCURA?
 - a URL to your mug shot
 - let me know you! e.g., reference letters
 CSc 360

5/6/15 CSc³60 2 * connex->csc360->lectures or http://www.cs.uvic.ca/~pan/csc360

A quick review and a quick overview

- Computer organization and architecture – CPU
 - Memory
 - I/O: polling, interrupt, DMA
- Operating system
 - The software that manages CPU, memory and I/O, as many more

- so let's review CPU, memory and I/O first

5/6/15 CSc 360 3

- CPU Computer Organization
- Memory

• I/O

CPU

Access

- pins: address, data, control, status

- Internals
 - program counter (PC)
 - registers: address, data, control, flags
 - arithmetic logic unit (ALU), FPU, etc
- Benchmarks

- clock (GHz), instructions/cycle, MIPS

5/6/15 CSc 360 5 * FOPS * multi-core * GPU/GPGPU * top500.org

CPU operations

Fetch

- retrieve instructions from memory (cache)

Decode

- instruction: operator, operands; microcode

- Execute
 - arithmetic/logic operation
 - move data between register, memory, I/O
 - change execution flow

5/6/15

CSc 360 * CISC vs RISC * x86 vs ARM, etc

6 * what's in your (i)phone?

- Access
 - linear address
 - segmented address: segment, index
 - physical address: cylinder, header, sector (disk)
- Benchmarks
 - clock (MHz); read/write cycles
 - width (bits)
 - throughput (Mbps)

5/6/15 CSc 360 7 * there are many different kinds of memory (devices)

Memory hierarchies

- Speed vs. size (vs. cost)
 - registers: inside CPU
 - cache: transparent to programs
 - memory: main storage
 - DRAM, DDR, SDRAM, SRAM, etc
 - disks: secondary storage
 - electronic, magnetic, optical, etc
 - tapes: backup storage
 - networked storage: NAS/SAN
- Caching

5/6/15 CSc 360 8 * who's the largest consumer of HDDs and tapes nowadays?

- A large variety of input/output devices
 - keyboard/mouse, video, audio, network, etc
- Access
 - Address
 - port numbers
 - I/O vs. memory space
 - Interrupt

5/6/15

- Direct memory access (DMA)
- Synchronous vs asynchronous

I/O

Interrupts

- Asynchronous operation
- Nonmaskable interrupts

 e.g., hardware fault
- Hardware interrupts
 - -hardware events: e.g., I/O completion
 - interrupt controller: priority & arbitration
- Software interrupts
 - trap, system call

10

Interrupt handling

Save current state

- CPU counters, registers, flags at system stack

• Update program counter

interrupt controller; interrupt vectors

- Execute interrupt routine
- Restore previous state
- Multiple interrupts

- priority, masking, reentry

5/6/15 CSc 360 11 e.g., fire bell rings (for a dry run)

DMA

- High-speed I/O, bulk data transfe
- DMA controller
 - source/destination address
 - counter: the amount of data to be moved
- DMA handling
 - program DMA controller
 - execute DMA concurrently
 - issue an interrupt on DMA completion

5/6/15

CSc 360

I/O controller

12

Q: compare interrupt vs DMA

Computer architectures

- Single-processor systems
- Multi-processor systems

 symmetric multiprocessing (SMP)
- Cluster systems
 - interconnected systems
- Distributed systems

networked systems

• Grid systems \rightarrow Cloud systems

5/6/15 CSc 360 13 * the other end of the spectrum: embedded systems

OS: historical view

- Requirements evolve
- Was
 - computers were more expensive than users
 - goals: make computers more efficiently used
 - results: share computers
- Now
 - users become more "expensive" than computers
 - goals: make computers more effectively used
 - results: share users (among many computers)

5/6/15 CSc 360 * network OS; data-center OS 14 * "attention" war

OS: generations

- Uniprogramming
 - "One program at a time"
 - start, execute, {wait, execute}*, finish
 - wait for: input/output, other programs, etc
 - CPU may be idle most of the time
- Multiprogramming
 - "Many programs at a time"
 - try to keep CPU always busy
 - handle multiple programs at the same time
 - "share" (a) CPU

5/6/15 CSc 360

Batch processing

- Load a pool of jobs
- Execute one job until it is blocked
- Pick another one to execute

Time sharing

- Execute one job up to a certain time – e.g., hardware timer with counter
- Switch to another one to execute
 job scheduling, memory swapping
- Seem to execute *many* jobs at the same time
- Batch processing vs time sharing
 - job responsiveness
 - switching overhead

5/6/15

CSc 360 17 Q: compare batch processing vs time sharing

- Interrupt the current job
 - yield: system call trap (e.g., I/O)
 - yank: hardware timer interrupt
 - -how about an "abusive" job?
- Dual-mode operation
 - user mode for regular applications
 - kernel mode with privileged instructions
 - trap: user to kernel entry

OS:

operations

Process management

- Process: a running program
 vs thread
- Create, delete, suspend, resume process – resource allocation: CPU, memory, I/O, etc

19

- Schedule processes/threads
- Synchronize processes
- Communicate between processes
- Handle deadlocks 5/6/15 CSc 360

Memory management

20

- (Main) memory
 - store instructions for execution
 - store data for processing
- Keep track available memory
- Allocate and reclaim memory
 - provide protected access
 - trap invalid access
- Swap in/out (virtual) memory

5/6/15 CSc 360 * memory leak? garbage collection?

Storage and I/O management

- "In Unix, everything is a file"
 a logical interface: open, read, write
- Create and delete files and directories
 - directory is a special file
 - file system hierarchy
- Manipulate files and directories
 - provide protected access

handle device-specific issues (disks, etc)
 5/6/15 CSc 360 21
 main reason to see OS (installation disc) grow in size (drivers)

User management

- Authentication
 - -who's who
 - -user credentials (e.g., password, token)
- Authorization
 - what can do what
 - access control (e.g., read, write, execute)
- Accounting

- what has been done (e.g., logging) 5/6/15 CSc 360 22

Specialized OS

- Different requirements and constraints

 real-time systems
 - "hard" real-time OS in embedded systems
 - "soft" real-time OS in multimedia systems
 - -handheld systems
 - almost a full-blown OS, with resource constraints
 - -embedded systems
 - very severe resource constraints

5/6/15 CSc 360 23

This lecture

- An overview on operating systems
 - Multiprogramming
 - Batch processing vs time sharing
 - Dual-mode operations
 - Issues in
 - process management
 - memory management
 - file management

Next lecture

- Interfaces to OS
 - CLI, GUI, system calls, API
 - read OSC7 Chapter 2 (or OSC6 Chapter 3)