On Optimality and Scalability of Generalized Matching

Cheng Chen

From Matching to "Generalized" Matching

 Matching: a matching M in a graph G is a set of non-adjacent edges (no two edges share a common vertex)

- Generalized Matching
 - Each node v is allowed to be connected to more than 1 neighbors
 - We study the bipartite graph

Bipartite Generalized Matching in Action (BGM)

- BGM has found applications in Internet Advertising, Recommendation, ...
- Assume we are running an online DVD rental website:
 - Each buyer/item has a capacity
 - Items are in conflict in terms of genre
 - Each buyer is recommended at most one item per genre (diversity)
 - Maximize the buyer utilities

Problem Definition

- Conflict-aware Constrained Recommendation (CAC-REC)
 - Input
- An undirected, weighted graph G = ⟨(B, S), E ∪ C, W⟩ with E ⊆ B × S, C ⊆ B × B and weights W : E → R⁺;
- 2. Degree constraints $D: B \cup S \to \mathbb{N}$;
- 3. A conflict threshold t.

Objective

The goal in CAC-REC is to compute a maximum weight subgraph G' of G, $G' = ((B, S), E' \cup C', W)$, that satisfies the following two constraints:

- 1. For any i in $B \cup S$, $d_{G'}(i) \leq D(i)$.
- 2. For any k in S, $|\{(i,j)|(i,k),(j,k)\in E',(i,j)\in C'\}|\leq t$.

Problem Definition (Cont.)

$$\max_{X} WX$$
s.t. $\mathbb{A}X(i) \leq D(i), \forall i, 1 \leq i \leq m+n$

$$x_{ij} \in \{0, 1\}, \forall i, j, 1 \leq i \leq m, 1 \leq j \leq n,$$

$$\sum_{(j_k, j_l) \in C} x_{ki} x_{li} \leq t \ \forall \ i \in S$$

$$\max w^{\top}x$$

s.t. $Px \le p$ $Cx \ge c$ $x \ge 0$,

CAC-REC is Hard

- Maximum Weight b-Matching can be solved in polynomial time via maximum-flow techniques.
 - For bipartite graph, the integral optimal solution can be found in polynomial-time

- Conflict constraints of CAC-REC, however, significantly increase the complexity, making it NP-hard.
 - There is a polynomial-time reduction from the NP-hard problem Revenue Maximization in Interval Scheduling

Algorithms: LP-based

- Integer Linear Program (ILP)
 - Directly solved by ILP solver, such as Gurobi

- LP relaxation with rounding
 - 1. Solve the linear program relaxation to obtain optimal solution X (using Gurobi without integer constraints).
 - 2. Sort the fist *mn* elements of *X* from largest to smallest. Then round each non-zero value to 1 provided doing so does not violate the degree constraints or the conflict constraints. Otherwise, we set it to

Algorithms: GREEDY

- Sort all the edges in E by weights from largest to smallest
- 2. To construct the maximum weight subgraph G, consider every edge in the sorted list. Add this edge to G if doing so does not violate any degree constraint of conflict constraint.
- 3. Continue until we reach the end of the sorted list.

Experimental Results on LP-based Algorithms

(a) Money Solution

(b) Rank Solution

Experimental Results on GREEDY

GREEDY is scalable to larger datasets.

Ongoing Work

- The need to cope with BIG DATA, when:
 - Gurobi fails
 - Global sorting fails
- More efficient LP solvers

Parallel and Distributed Computing Concel Semantic Metada

Image Source: Forbes

References

- Iyer, Ganesh, David Soberman, and J. Miguel Villas-Boas.
 "The targeting of advertising." *Marketing Science* 24.3 (2005): 461-476.
- Armen S. Asratian, Tristan M. J. Denley, and Roland Häggkvist. 1998. Bipartite Graphs and their Applications.
 Cambridge University Press, New York, NY, USA.
- Aditya Parameswaran, Petros Venetis, and Hector Garcia-Molina. 2011. Recommendation systems with complex constraints: A course recommendation perspective. *ACM Trans. Inf. Syst.* 29, 4, Article 20 (December 2011), 33 pages.
- Julián Mestre. 2006. Greedy in approximation algorithms. In Proceedings of the 14th conference on Annual European Symposium - Volume 14 (ESA'06), Yossi Azar and Thomas Erlebach (Eds.), Vol. 14. Springer-Verlag, London, UK, UK, 528-539.
- Maryam Karimzadehgan, ChengXiang Zhai, and Geneva Belford. 2008. Multi-aspect expertise matching for review assignment. In *Proceedings of the 17th ACM conference on Information and knowledge management* (CIKM '08). ACM, New York, NY, USA, 1113-1122.